Sign in to follow this  
Followers 0

Anatomy of a Carb Sync - How do you know which one to adjust?

4 posts in this topic

Posted (edited)

Thursday, 08 December 2011 21:25

The Anatomy of a Carb Sync

Written by Rotax Owner

How do you know which one to adjust?

p-2-stk-sync.jpg

The carburetor sync on a 2 stroke or 4 stroke ROTAX Engine is one of the most important functions to keep up with for the health of your engine.

Let’s take a look at performing a carb sync on a 912 series engine. The carb sync is nothing to be afraid of and with a few times at bat, performing this function will become fairly easy. First, why is it so important? The carb sync should be done anytime the carbs or throttle cables are removed or adjusted and at the 100 hour or Annual Condition Inspections. The reason for this is cables stretch, cable hysteresis (cable stickiness), pulley system wear, cables slip and because parts wear and end up with more tolerances. The carbs are almost always out of sync at each 100 hours or the Annual. If you did a carb sync back at the last inspection then they may not be out of sync much, but they will in most cases be out at least a bit. The sync instrument should also be used to set the idle sync if you change idle settings. Let’s start off with thinking of the engine as two engines, a left side and a right side. Two carbs controlling different sides of the engine. You don’t want one side trying to operate at 5000 rpm while the other side is trying to operate at 5100 rpm. These opposing rpms will cause excessive stress and wear on your engine over time and possible damage. You say there is a balance tube in between to help balance them out. The operative word in that sentence is “helpâ€. The balance tube can correct and help with small differences between the two carbs, but it is not a cure all and it is there to help make the system run a little smoother than if there was no connection or correlation between the two carbs...

So which sync instrument to use? Well that is up to you, but here are a few considerations. You might use an electronic sync instrument like a CarbMate, Syncromate or a set of gauges. Here are a few pros and cons of each sync instrument. The electronic instrument may have the capability to split hairs and give you a very fine adjustment, but they are harder to interpret as far as knowing which carb you want to adjust to achieve a specific goal to bring the two carb vacuums together. It takes more time and going back and forth to get this accuracy. You also need a power supply like your battery to attach electrical leads to operate the instrument. There is nothing wrong with this, it’s just different. The standard type dial gauges (liquid filled are better for dampening with needle valves in line to assist for dampening needle pulsation) allow the user to see immediately which carb he needs to adjust and how much he may need to make this adjustment. This writers’ one thought here is; does the accuracy of an electronic device to split hairs that fine over a gauge really make a difference and can the carbs and engine really tell the difference? If you pay attention to detail and use good gauges you can be very accurate. The drawback to standard gauges is they may not be as accurate as the electronic tools are. Picking one of these sync instruments is strictly up to the end user and their personal preference, both systems are acceptable.

Let’s move on to the actual anatomy of the sync and what to look for. I would like this discussion to be on the use of the gauges because it will offer some visual numbers to work with and helps in the understanding of this article. First the engine should be up to operating temperature. Safety first so put in place wheel chocks, hearing protection, eye protection and a person at the controls for safety. Now you need to separate both carbs. You can use hose pinch pliers to clamp off the rubber hose used to connect the balance tube between the intake manifolds or just remove one side rubber hose off the air intake and plug your gauge into the rubber hose end and the other over the metal nipple it was attached to. Later model engines have two small screws, one on top of each air intake manifold you can attach your sync instruments into also, but you still need to address isolating the carbs by either clamping off or plugging the cross over tube we discussed earlier. This writer prefers to slide the cross over tube rubber hose back off one intake manifold since it makes sure the carbs are fully isolated while preventing any hose pinching damage from using pliers to squeeze the rubber hose instead. This is only what I prefer, it’s up to you to choose your method.

There are two syncs to perform, the mechanical sync and the pneumatic sync. The mechanical sync is really well explained in the Rotax Owners video (http://www.rotax-own...-exp-si-912-018) and I recommend anyone wanting to perform this task to watch this e-learning video! As well the procedure is also described (although not in quite the same detail) in the Rotax Line Maintenance manual, either way with proper knowledge it’s quick and easy to perform. So now you’re all set in your safety gear so have your safety cockpit operator start the engine. (Don’t forget to advise them that if they see you spin more than three times in the prop to turn the engine off! Also make sure your cockpit manager likes you and don’t use your wife right after an argument with her! smiley-smile.gif)

Now we have the engine running and we take a look at our gauge set. If the needles are pulsating then close the needle valves slightly until they stop and become smooth. Set the RPM to slightly more than idle (off-idle as Rotax calls it). Idle and low RPM is the most critical RPM for smoothness as the power pulses are very pronounced and the gearbox will be working hard as it must settle this argument between the piston power pulses and the huge inertia of the prop. At RPMs over 3000 the engine becomes smoother and the shaking is less pronounced. Let’s mention here that to change the RPMs you adjust the Bowden cable screw either in or out which will add or subtract some rpm. You use the carb idle adjustment stop screw to affect the engine idle only. You do sometimes need to adjust the Bowden cable length to get the idle screw to have enough affect, but we can cross that bridge later.

Okay back to our running engine. Have your cockpit operator advance the throttle up to at least 2000 RPM and check to assure your still in sync, if so continue to advance the throttle all the way up to at least 3500 RPM minimum to assure your high speed sync remains matched. Assuming that’s still working continue to even higher RPM’s just to make sure the carbs remain balanced to the higher power settings respecting the fact you need to assure you are out of the prop blast and the aircraft remains secure. If at the higher RPM’s you don’t remain balanced one of two things might be happening. Because an engine well synced at 2000 RPM should hold that sync all the way to full throttle, if it doesn’t you either have binding in the cables or there is something hanging up in your throttle system not allowing the throttle arms on the carbs to move uniformly with one another. If so; check and correct. The second and much more remote possibility is you have a cylinder that is falling off line due to a hanging up valve or other issue. This is very unlikely on a Rotax but I mention it because even though it rarely happens it might save someone from scratching their heads after verifying the throttle actuation of the cables and throttle levers is all working properly yet an out of sync condition remains. So, backing up to the first off idle sync check at 2000 RPM, let’s say you look at the gauges and see that the left side is at 5†of vacuum (more fuel) and the right side is at 6†of vacuum (less fuel). (Vacuum is expressed in inches of water “H2O or inches of mercury “Hg) The higher the vacuum in our case (6â€), the harder the carb is trying to draw in air and fuel, leaner , less fuel. The lower the vacuum (5â€) the more fuel it is receiving (richer). Keep this in your head about vacuum, the higher number is less fuel (leaner)and the lower the vacuum number, more fuel (richer). Now let’s go to the left side and loosen the Bowden adjustment nuts and screw it back out toward the cable and shorten the cable which pulls the throttle arm and reduces the rpm and fuel flow. Adjust it back until its 5†moves to 6†like the 6†on the right side. Now they should both be equal at 6†of vacuum at 2000RPM allowing you to proceed to the higher RPM checks. If you went to adjust this left side and the adjustment was already way back and you didn’t have enough adjustment there to pull it back any farther then you have two choices. Go to the other side and adjust that Bowden cable adjuster forward to lengthen it and lower the vacuum towards the left side. The other thing you may need to do is shut down the engine, screw the Bowden cable adjustment in towards the half way position and then loosen the cable at the throttle arm screw and shorten it by 1/16†to give you more room to adjust the Bowden cable adjuster farther back on that left side. Sometimes because of how these are setup you may need to adjust one side back a tad and adjust the other side forwards a tad to make them equal and not run out of adjustment on either side.

Now pull the throttle back to idle and see where it is. If you have a 912ULS a good idle is around 1750-1850 rpm to stay above the low RPM vibration and hammering the higher compression of this engine has(it doesn’t like really low idle settings so they should be avoided). Now if your idle is too high after you pulled the throttle back then look at the gauge and see which gauge has the lower vacuum number. Remember the lower the number the more fuel it is receiving. Let’s say the idle rpm is 1900 rpm and you want 1800 rpm. The right carb gauge is at 12†and the left carb is at 11â€. The carb on the left side is getting more fuel and the rpm is too high. So that is the carb we want to reduce the rpm on and raise the vacuum to get to 12†like the right side. So you back out the idle stop screw and the 11†of vacuum raises to 12†of vacuum like the right side. If that made your idle rpm 1800 and you are happy then you’re done. If your idle rpms were still too high then back the idle stop screws out on both sides a little more until the idle rpm is where you want it and the vacuum on both sides is equal. Always double check your work. Run the engine back up to 3500+ rpm and see if the needles are still equal and if not then you may have hysteresis, a broken strand or some other factor causing unequal cable movement that needs attention(or as discussed earlier, that lazy cylinder, another topic for another time). Then back to idle to check that vacuum setting and the idle rpm. If you idle for a long time making an adjustment then run the engine up for a few seconds now and then to help keep it cleared out and from loading up at those low rpms. If your idle rpm was too low (1600 rpm) then screw the idle stop screw in more on the carb with the higher vacuum 12†down to 11†until the vacuum number lowers to match the other side of 11â€and the idle comes up where you want it.

After you have doubled checked your work then shut down the engine and make sure all the jam nuts to the Bowden cable adjuster are snug. Remove the gauge set and connect the carb balance tube setup. Even after a sync the engine may be slightly rougher with the carbs balance tube separated, but should be a little smoother when it is reconnected.

Two last parting comments. The throttle control system in your cockpit at idle should have an idle stop on it and when you pull it back to its stop at idle then the idle stop screw on the carb should just make contact at the same time. If you do not have a throttle stop for idle in the cockpit then you will most likely bend the idle stop levers on the carbs due to the leverage advantage you gain from the cockpit throttle control. This over powering of the idle stops on the carbs will result in the idle ending up too low. This continuous bending towards lower idle could also lead to a much bigger chance of stalling your engine from low rpm in flight and it won’t be when you want it to quit. Pay attention to how your aircraft design addresses this issue and adjust accordingly!

Second; You should check the balance of the carbs at both high rpm and at idle. I have seen some back off the idle stop screw until it no longer functions and that means the carbs can only be synced at the higher rpms and not at idle. That means the engine is operating at idle at opposing rpms. If you thought it was important to sync your carbs at the higher rpms to keep them from opposing each other, reduce vibration and from hammering the engine why on earth would anyone not sync them at idle? This is a poor practice to get into. You spend a lot of time idling. Remember what our Dad’s told us; “If it’s worth doing, it’s worth doing rightâ€.

I know this was a long article, but I thought it may be worth covering for some Rotax owners. If you fell asleep half way through, print it out and take it to the airfield.

FLY SAFE AND FAR AND ABOVE ALL, HAVE FUN LIVING YOUR DREAM OF FLIGHT!

p.s.

Your Rotax engine will give many hours of trouble free operation, just follow the Rotax manuals and provide it with the prescribed on time maintenance. Many of these maintenance topics are covered in greater detail in the video section of the Rotax-Owner web site, click here for a complete list: http://joomla.rotax-....com/all-videos

Related E-Learning Videos:

Carburetor Synchronization

Carburetor Balance - 2 Stroke

Bing 54 Carburetor Rebuild - 2 Stroke

Carburetor Needle Position Adjustment

Related Product Review Video:

Product Review - CarbMate

Edited by dholly
4 people like this

Share this post


Link to post
Share on other sites

Posted

Great information! Someday I may need this one since I'm running the Bing 64's on the Soob. I guess I should invest in some sort of vacuum gauge. Too bad Rotax charges to watch their videos now. Maybe if I actually owned one of their engines it might be okay, but just for some information on the Bing carburetors they choose to use on their engine...yeah, I think not.

 

Thanks for the post!

Share this post


Link to post
Share on other sites

Posted

I've been down awhile. this article ROCKS! Thanks. Well written, well written, Well written.

Wheels

1 person likes this

Share this post


Link to post
Share on other sites

Posted

Welcome to the site wheels, glad you found the post useful. We have some pretty good 2-stroke guys here, which engine are you working with?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0